# Indices and tables¶

Created on Jan 27, 2012

@author: Carl Sandrock

utils.BoundKS(G, poles, up, e=1e-05)

The functions uses equaption 6.24 (p229) to calculate the peak value for KS transfer function using the stable version of the plant.

Parameters: G : numpy matrix (n x n) The transfer function G(s) of the system. poles : numpy array (number of poles) List of right-half plane poles. up : numpy array (number of poles) List of input pole directions. e : float Avoid division by zero. Let epsilon be very small (optional). KS_max : float Minimum peak value.
utils.BoundST(G, poles, zeros, deadtime=None)

This function will calculate the minimum peak values of S and T if the system has zeros and poles in the input or output. For standard conditions Equation 6.8 (p224) is applied. Equation 6.16 (p226) is used when deadtime is included.

Parameters: G : numpy matrix (n x n) The transfer function G(s) of the system. poles : numpy array (number of zeros) List of poles. zeros : numpy array (number of zeros) List of zeros. deadtime : numpy matrix (n, n) Deadtime or time delay for G. Ms_min : real Minimum peak value.
utils.Closed_loop(Kz, Kp, Gz, Gp)

Return zero and pole polynomial for a closed loop function.

Parameters: Kz & Gz : list Polynomial constants in the numerator. Kz & Gz : list Polynomial constants in the denominator. Zeros_poly : list List of zero polynomial for closed loop function. Poles_poly : list List of pole polynomial for closed loop function.
utils.ControllerTuning(G, method='ZN')

Calculates either the Ziegler-Nichols or Tyreus-Luyben tuning parameters for a PI controller based on the continuous cycling method.

Parameters: G : tf plant model method : Use ‘ZN’ for Ziegler-Nichols tuning parameters and ‘TT’ for Tyreus-Luyben parameters. The default is to return Ziegler-Nichols tuning parameters. Kc : array containing a real number proportional gain Taui : array containing a real number integral gain Ku : array containing a real number ultimate P controller gain Pu : array containing a real number corresponding period of oscillations
utils.IterRGA(A, n)

Computes the n’th iteration of the RGA.

Parameters: G : numpy matrix (n x n) The transfer function G(s) of the system. n’th iteration of RGA matrix : matrix iterated RGA matrix of complex numbers.
utils.RGA(G)

Computes the RGA (Relative Gain Array) of a matrix.

Parameters: G : numpy matrix (n x n) The transfer function G(s) of the system. RGA matrix : matrix RGA matrix of complex numbers.
utils.RGAnumber(G, I)

Computes the RGA (Relative Gain Array) number of a matrix.

Parameters: G : numpy matrix (n x n) The transfer function G(s) of the system. I : numpy matrix Pairing matrix. RGA number : float RGA number.
utils.SVD(G)

Returns the singular values (Sv) as well as the input and output singular vectors (V and U respectively).

Parameters: G : numpy matrix (n x n) The transfer function G(s) of the system. U : matrix of complex numbers Unitary matrix of output singular vectors. Sv : array Singular values of Gin arranged in decending order. V : matrix of complex numbers Unitary matrix of input singular vectors.
utils.Wp(wB, M, A, s)

Computes the magnitude of the performance weighting function. Based on Equation 2.105 (p62).

Parameters: wB : float Approximate bandwidth requirement. Asymptote crosses 1 at this frequency. M : float Maximum frequency. A : float Maximum steady state tracking error. Typically 0. s : complex Typically w*1j. |Wp(s)| : float The magnitude of the performance weighting fucntion at a specific frequency (s).
utils.arrayfun(f, A)

Recurses down to scalar elements in A, then applies f, returning lists containing the result.

Parameters: A : array f : function arrayfun : list >>> def f(x): … return 1. >>> arrayfun(f, numpy.array([1, 2, 3])) [1.0, 1.0, 1.0] >>> arrayfun(f, numpy.array([[1, 2, 3], [1, 2, 3]])) [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]] >>> arrayfun(f, 1) 1.0
utils.astf(maybetf)
Parameters: maybetf – something which could be a tf a transfer function object
>>> G = tf( 1, [ 1, 1])
>>> astf(G)
tf([1.], [1. 1.])

>>> astf(1)
tf([1.], [1.])

>>> astf(numpy.matrix([[G, 1.], [0., G]]))
matrix([[tf([1.], [1. 1.]), tf([1.], [1.])],
[tf([0.], ), tf([1.], [1. 1.])]], dtype=object)

utils.circle(cx, cy, r)

Return the coordinates of a circle

Parameters: cx : float Center x coordinate. cy : float Center y coordinate. r : float Radius. x, y : float Circle coordinates.
utils.det(A)

Calculate determinant via elementary operations

Parameters: A – Array-like object determinant
>>> det(2.)
2.0

>>> A = [[1., 2.],
...      [1., 2.]]
>>> det(A)
0.0

>>> B = [[1., 2.],
...      [3., 4.]]
>>> det(B)
-2.0

>>> C = [[1., 2., 3.],
...      [1., 3., 2.],
...      [3., 2., 1.]]
>>> det(C)
-12.0


# Can handle matrices of tf objects # TODO: make this a little more natural (without the .matrix) >>> G11 = tf(, [1, 2]) >>> G = mimotf([[G11, G11], [G11, G11]]) >>> det(G.matrix) tf([0.], )

>>> G = mimotf([[G11, 2*G11], [G11**2, 3*G11]])
>>> det(G.matrix)
tf([ 3. 16. 28. 16.], [ 1. 10. 40. 80. 80. 32.])

utils.distRHPZ(G, Gd, RHP_Z)

Applies equation 6.48 (p239) For performance requirements imposed by disturbances. Calculate the system’s zeros alignment with the disturbacne matrix.

Parameters: G : numpy matrix (n x n) The transfer function G(s) of the system. gd : numpy matrix (n x 1) The transfer function Gd(s) of the distrurbances. RHP_Z : complex Right-half plane zero Dist_RHPZ : float Minimum peak value.
utils.distRej(G, gd)

Convenience wrapper for calculation of ||gd||2 (equation 6.42, p238) and the disturbance condition number (equation 6.43) for each disturbance.

Parameters: G : numpy matrix (n x n) The transfer function G(s) of the system. gd : numpy matrix (m x n) The transfer function Gd(s) of the distrurbances. 1/||gd|| :math:_2 : float The inverse of the 2-norm of a single disturbance gd. distCondNum : float The disturbance condition number $$\sigma$$ (G) $$\sigma$$ (G $$^{-1}$$ yd) yd : numpy matrix Disturbance direction.
utils.feedback(forward, backward=None, positive=False)

Defined for use in connect function Calculates a feedback loop This version is for trasnfer function objects Negative feedback is assumed, use positive=True for positive feedback Forward refers to the function that goes out of the comparator Backward refers to the function that goes into the comparator

utils.feedback_mimo(forward, backward=None, positive=False)

Calculates a feedback loop This version is for matrices Negative feedback is assumed, use positive=True for positive feedback Forward refers to the function that goes out of the comparator Backward refers to the function that goes into the comparator

utils.findst(G, K)

Find S and T given a value for G and K.

Parameters: G : numpy array Matrix of transfer functions. K : numpy array Matrix of controller functions. S : numpy array Matrix of sensitivities. T : numpy array Matrix of complementary sensitivities.
utils.freq(G)

Calculate the frequency response for an optimisation problem

Parameters: G : tf plant model Gw : frequency response function
utils.gaintf(K)

Transform a gain value into a transfer function.

Parameters: K : float Gain. gaintf : tf Transfer function.
utils.kalman_controllable(A, B, C, P=None, RP=None)

Computes the Kalman Controllable Canonical Form of the inout system A, B, C, making use of QR Decomposition. Can be used in sequentially with kalman_observable to obtain a minimal realisation.

Parameters: A : numpy matrix The system state matrix. B : numpy matrix The system input matrix. C : numpy matrix The system output matrix. P : (optional) numpy matrix The controllability matrix RP : (optional int) Ac : numpy matrix The state matrix of the controllable system Bc : nump matrix The input matrix of the controllable system Cc : numpy matrix The output matrix of the controllable system
utils.kalman_observable(A, B, C, Q=None, RQ=None)

Computes the Kalman Observable Canonical Form of the inout system A, B, C, making use of QR Decomposition. Can be used in sequentially with kalman_controllable to obtain a minimal realisation.

Parameters: A : numpy matrix The system state matrix. B : numpy matrix The system input matrix. C : numpy matrix The system output matrix. Q : (optional) numpy matrix Observability matrix RQ : (optional) int Rank of observability matrxi Ao : numpy matrix The state matrix of the observable system Bo : nump matrix The input matrix of the observable system Co : numpy matrix The output matrix of the observable system
utils.lcm_of_all_minors(G)

Returns the lowest common multiple of all minors of G

utils.listify(A)

Transform a gain value into a transfer function.

Parameters: K : float Gain. gaintf : tf Transfer function.
utils.margins(G)

Calculates the gain and phase margins, together with the gain and phase crossover frequency for a plant model

Parameters: G : tf plant model GM : array containing a real number gain margin PM : array containing a real number phase margin wc : array containing a real number gain crossover frequency where |G(jwc)| = 1 w_180 : array containing a real number phase crossover frequency where angle[G(jw_180] = -180 deg
utils.marginsclosedloop(L)

Calculates the gain and phase margins, together with the gain and phase crossover frequency for a control model

Parameters: L : tf loop transfer function GM : real gain margin PM : real phase margin wc : real gain crossover frequency for L wb : real closed loop bandwidth for S wbt : real closed loop bandwidth for T
utils.matrix_as_scalar(M)

Return a scalar from a 1x1 matrix

Parameters: M – matrix scalar part of matrix if it is 1x1 else just a matrix
utils.maxpeak(G, w_start=-2, w_end=2, points=1000)

Computes the maximum bode magnitude peak of a transfer function

class utils.mimotf(matrix)

Represents MIMO transfer function matrix

This is a pretty basic wrapper around the numpy.matrix class which deals with most of the heavy lifting.

You can construct the object from siso tf objects similarly to calling numpy.matrix:

>>> G11 = G12 = G21 = G22 = tf(1, [1, 1])
>>> G = mimotf([[G11, G12], [G21, G22]])
>>> G
mimotf([[tf([1.], [1. 1.]) tf([1.], [1. 1.])]
[tf([1.], [1. 1.]) tf([1.], [1. 1.])]])


Some coersion will take place on the elements: >>> mimotf([]) mimotf([[tf([1.], [1.])]])

The object knows how to do:

>>> G + G
mimotf([[tf([2.], [1. 1.]) tf([2.], [1. 1.])]
[tf([2.], [1. 1.]) tf([2.], [1. 1.])]])

>>> 0 + G
mimotf([[tf([1.], [1. 1.]) tf([1.], [1. 1.])]
[tf([1.], [1. 1.]) tf([1.], [1. 1.])]])

>>> G + 0
mimotf([[tf([1.], [1. 1.]) tf([1.], [1. 1.])]
[tf([1.], [1. 1.]) tf([1.], [1. 1.])]])


multiplication >>> G * G mimotf([[tf([2.], [1. 2. 1.]) tf([2.], [1. 2. 1.])]

[tf([2.], [1. 2. 1.]) tf([2.], [1. 2. 1.])]])
>>> 1*G
mimotf([[tf([1.], [1. 1.]) tf([1.], [1. 1.])]
[tf([1.], [1. 1.]) tf([1.], [1. 1.])]])

>>> G*1
mimotf([[tf([1.], [1. 1.]) tf([1.], [1. 1.])]
[tf([1.], [1. 1.]) tf([1.], [1. 1.])]])

>>> G*tf(1)
mimotf([[tf([1.], [1. 1.]) tf([1.], [1. 1.])]
[tf([1.], [1. 1.]) tf([1.], [1. 1.])]])

>>> tf(1)*G
mimotf([[tf([1.], [1. 1.]) tf([1.], [1. 1.])]
[tf([1.], [1. 1.]) tf([1.], [1. 1.])]])


exponentiation with positive integer constants

>>> G**2
mimotf([[tf([2.], [1. 2. 1.]) tf([2.], [1. 2. 1.])]
[tf([2.], [1. 2. 1.]) tf([2.], [1. 2. 1.])]])


Methods

 __call__(s) >>> G = mimotf([]) >>> G(0) matrix([[1.]])  inverse() Calculate inverse of mimotf object poles() Calculate poles >>> s = tf([1, 0], ) >>> G = mimotf([[(s - 1) / (s + 2), 4 / (s + 2)], …
 cofactor_mat det mimotf_slice zeros
inverse()

Calculate inverse of mimotf object

>>> s = tf([1, 0], 1)
>>> G = mimotf([[(s - 1) / (s + 2),  4 / (s + 2)],
...              [4.5 / (s + 2), 2 * (s - 1) / (s + 2)]])
>>> G.inverse()
matrix([[tf([ 1. -1.], [ 1. -4.]), tf([-2.], [ 1. -4.])],
[tf([-2.25], [ 1. -4.]), tf([ 0.5 -0.5], [ 1. -4.])]],
dtype=object)

>>> G.inverse()*G.matrix
matrix([[tf([1.], [1.]), tf([0.], )],
[tf([0.], ), tf([1.], [1.])]], dtype=object)

poles()

Calculate poles >>> s = tf([1, 0], ) >>> G = mimotf([[(s - 1) / (s + 2), 4 / (s + 2)], … [4.5 / (s + 2), 2 * (s - 1) / (s + 2)]]) >>> G.poles() array([-2.])

utils.mimotf2sym(G, deadtime=False)

Converts a mimotf object making use of individual tf objects to a transfer function system in sympy.Matrix form.

Parameters: G : mimotf matrix The mimotf system matrix. deadtime: boolean Should deadtime be added to sympy matrix or not. Gs : sympy matrix The sympy system matrix s : sympy symbol Sympy symbol generated
utils.minimal_realisation(a, b, c)

“This function will obtain a minimal realisation for a state space model in the form given in Skogestad second edition p 119 equations 4.3 and 4.4

Parameters: a – numpy matrix the A matrix in the state space model b – numpy matrix the B matrix in the state space model c – numpy matrix the C matrix in the state space model

Examples

Example 1:

>>> A = numpy.matrix([[0, 0, 0, 0],
...                   [0, -2, 0, 0],
...                   [2.5, 2.5, -1, 0],
...                   [2.5, 2.5, 0, -3]])

>>> B = numpy.matrix([,
...                   ,
...                   ,
...                   ])

>>> C = numpy.matrix([0, 0, 1, 1])

>>> Aco, Bco, Cco = minimal_realisation(A, B, C)


Add null to eliminate negatives null elements (-0.)

>>> Aco.round(decimals=3) + 0.
array([[-2.038,  5.192],
[ 0.377, -0.962]])

>>> Bco.round(decimals=3) + 0.
array([[ 0.   ],
[-1.388]])

>>> Cco.round(decimals=3) + 0.
array([[-1.388,  0.   ]])


Example 2:

>>> A = numpy.matrix([[1, 1, 0],
...                    [0, 1, 0],
...                    [0, 1, 1]])

>>> B = numpy.matrix([[0, 1],
...                   [1, 0],
...                   [0, 1]])

>>> C = numpy.matrix([1, 1, 1])

>>> Aco, Bco, Cco = minimal_realisation(A, B, C)


Add null to eliminate negatives null elements (-0.)

>>> Aco.round(decimals=3) + 0.
array([[ 1.   ,  0.   ],
[-1.414,  1.   ]])

>>> Bco.round(decimals=3) + 0.
array([[-1.   ,  0.   ],
[ 0.   ,  1.414]])

>>> Cco.round(decimals=3) + 0.
array([[-1.   ,  1.414]])

utils.minors(G, order)

Returns the order minors of a MIMO tf G.

utils.omega(w_start, w_end)

Convenience wrapper Defines the frequency range for calculation of frequency response Frequency in rad/time where time is the time unit used in the model.

utils.phase(G, deg=False)

Return the phase angle in degrees or radians

Parameters: G : tf Plant of transfer functions. deg : booleans True if radians result is required, otherwise degree is default (optional). phase : float Phase angle.
utils.pole_zero_directions(G, vec, dir_type, display_type='a', e=1e-08, min_tol=1e-05, max_tol=10000.0)

Crude method to calculate the input and output direction of a pole or zero, from the SVD.

Parameters:
G : numpy matrix (n x n)

The transfer function G(s) of the system.

vec : array

A vector containing all the transmission poles or zeros of a system.

dir_type : string

Type of direction to calculate.

dir_type Choose
‘p’ Poles
‘z’ Zeros
display_type : string

Choose the type of directional data to return (optional).

display_type Directional data to return
‘a’ All data (default)
‘u’ Only input direction
‘y’ Only output direction
e : float

Avoid division by zero. Let epsilon be very small (optional).

min_tol : float

Acceptable tolerance for zero validation. Let min_tol be very small (optional).

max_tol : float

Acceptable tolerance for pole validation. Let max_tol be very small (optional).

Returns:
pz_dir : array

Pole or zero direction in the form: (pole/zero, input direction, output direction, valid)

valid : integer array

If 1 the directions are valid, else if 0 the directions are not valid.

utils.poles(G=None, A=None)

If G is passed then return the poles of a multivariable transfer function system. Applies Theorem 4.4 (p135). If G is NOT specified but A is, returns the poles from the state space description as per section 4.4.2.

Parameters: G : sympy or mimotf matrix (n x n) The transfer function G(s) of the system. A : State Space A matrix pole : array List of poles.
utils.poles_and_zeros_of_square_tf_matrix(G)

Determine poles and zeros of a square mimotf matrix, making use of the determinant. This method may fail in special cases. If terms cancel out during calculation of the determinant, not all poles and zeros will be determined.

Parameters: G : mimotf matrix (n x n) The transfer function of the system. z : array List of zeros. p : array List of poles. possible_cancel : boolean Test whether terms were possibly cancelled out in determinant calculation.
utils.polygcd(a, b)

Find the approximate Greatest Common Divisor of two polynomials

>>> a = numpy.poly1d([1, 1]) * numpy.poly1d([1, 2])
>>> b = numpy.poly1d([1, 1]) * numpy.poly1d([1, 3])
>>> polygcd(a, b)
poly1d([1., 1.])

>>> polygcd(numpy.poly1d([1, 1]), numpy.poly1d())
poly1d([1.])

utils.scaling(G_hat, e, u, input_type='symbolic', Gd_hat=None, d=None)

Receives symbolic matrix of plant and disturbance transfer functions as well as array of maximum deviations, scales plant variables according to eq () and ()

Parameters: G_hat : matrix of plant WITHOUT deadtime e : array of maximum plant output variable deviations in same order as G matrix plant outputs u : array of maximum plant input variable deviations in same order as G matrix plant inputs input_type : specifies whether input is symbolic matrix or utils mimotf Gd_hat : optional matrix of plant disturbance model WITHOUT deadtime d : optional array of maximum plant disturbance variable deviations in same order as Gd matrix plant disturbances Returns ———- G_scaled : scaled plant function Gd_scaled : scaled plant disturbance function
utils.sigmas(A, position=None)

Returns the singular values of A

Parameters:
A : array

Transfer function matrix.

position : string

Type of sigmas to return (optional).

position Type of sigmas to return
max Maximum singular value
min Minimal singular value
Returns:
:math:sigma (A) : array

Singular values of A arranged in decending order.

This is a convenience wrapper to enable easy calculation of
singular values over frequency
utils.ssr_solve(A, B, C, D)

Solves the zeros and poles of a state-space representation of a system.

Parameters: A – System state matrix B – matrix C – matrix D – matrix

For information on the meanings of A, B, C, and D consult Skogestad 4.1.1

Returns:
zeros: The system’s zeros poles: the system’s poles

TODO: Add any other relevant values to solve for, for example, if coprime factorisations are useful somewhere add them to this function’s return dict rather than writing another function.

utils.state_controllability(A, B)

This method checks if the state space description of the system is state controllable according to Definition 4.1 (p127).

Parameters: A : numpy matrix Matrix A of state-space representation. B : numpy matrix Matrix B of state-space representation. state_control : boolean True if state controllable u_p : array Input pole vectors for the states u_p_i control_matrix : numpy matrix State Controllability Matrix
utils.state_observability_matrix(a, c)

calculate the observability matrix

Parameters: a – numpy matrix the A matrix in the state space model c – numpy matrix the C matrix in the state space model
utils.sv_dir(G, table=False)

Returns the input and output singular vectors associated with the minimum and maximum singular values.

Parameters: G : numpy matrix (n x n) The transfer function G(s) of the system. table : True of False boolean Default set to False. u : list of arrays containing complex numbers Output vector associated with the maximum and minium singular values. The maximum singular output vector is the first entry u and the minimum is the second u. v : list of arrays containing complex numbers Input vector associated with the maximum and minium singular values. The maximum singular intput vector is the first entry u and the minimum is the second u. table : If table is True then the output and input vectors are summarised and returned as a table in the command window. Values are reported to five significant figures.
utils.sym2mimotf(Gmat, deadtime=None)

Converts a MIMO transfer function system in sympy.Matrix form to a mimotf object making use of individual tf objects.

Parameters: Gmat : sympy matrix The system transfer function matrix. deadtime: numpy matrix of same dimensions as Gmat The dead times of Gmat with corresponding indexes. Gmimotf : sympy matrix The mimotf system matrix
class utils.tf(numerator, denominator=1, deadtime=0, name='', u='', y='', prec=3)

Very basic transfer function object

Construct with a numerator and denominator:

>>> G = tf(1, [1, 1])
>>> G
tf([1.], [1. 1.])

>>> G2 = tf(1, [2, 1])


The object knows how to do:

>>> G + G2
tf([1.5 1. ], [1.  1.5 0.5])
>>> G + G # check for simplification
tf([2.], [1. 1.])


multiplication

>>> G * G2
tf([0.5], [1.  1.5 0.5])


division

>>> G / G2
tf([2. 1.], [1. 1.])


>>> G3 = tf(1, [1, 1], deadtime=2)
>>> G3


>>> G2 + G3
Traceback (most recent call last):
...
ValueError: Transfer functions can only be added if their deadtimes are the same. self=tf([0.5], [1.  0.5]), other=tf([1.], [1. 1.], deadtime=2)


Although we can add a zero-gain tf to anything

>>> G2 + 0*G3
tf([0.5], [1.  0.5])

>>> 0*G2 + G3


It is sometimes useful to define

>>> s = tf([1, 0])
>>> 1 + s
tf([1. 1.], [1.])

>>> 1/(s + 1)
tf([1.], [1. 1.])


Methods

 __call__(s) This allows the transfer function to be evaluated at particular values of s. exp() If this is basically “D*s” defined as tf([D, 0], 1), return dead time inverse() Inverse of the transfer function lsim(*args) Negative step response step(*args) Step response
 poles simplify zeros
exp()
If this is basically “D*s” defined as tf([D, 0], 1),
>>> s = tf([1, 0], 1)
>>> numpy.exp(-2*s)

inverse()

Inverse of the transfer function

lsim(*args)

Negative step response

step(*args)

Step response

utils.tf2ss(H)

Converts a mimotf object to the controllable canonical form state space representation. This method and the examples were obtained from course work notes available at http://www.egr.msu.edu/classes/me851/jchoi/lecture/Lect_20.pdf which appears to derive the method from “A Linear Systems Primer” by Antsaklis and Birkhauser.

Parameters: H : mimotf The mimotf object transfer function form Ac : numpy matrix The state matrix of the observable system Bc : nump matrix The input matrix of the observable system Cc : numpy matrix The output matrix of the observable system Dc : numpy matrix The output matrix of the observable system
utils.tf_step(G, t_end=10, initial_val=0, points=1000, constraint=None, Y=None, method='numeric')

Validate the step response data of a transfer function by considering dead time and constraints. A unit step response is generated.

Parameters: G : tf Transfer function (input[u] or output[y]) to evauate step response. Y : tf Transfer function output[y] to evaluate constrain step response (optional) (required if constraint is specified). t_end : integer length of time to evaluate step response (optional). initial_val : integer starting value to evalaute step response (optional). points : integer number of iteration that will be calculated (optional). constraint : real The upper limit the step response cannot exceed. Is only calculated if a value is specified (optional). method : [‘numeric’,’analytic’] The method that is used to calculate a constrainted response. A constraint value is required (optional). timedata : array Array of floating time values. process : array (1 or 2 dim) 1 or 2 dimensional array of floating process values.
utils.zero_directions_ss(A, B, C, D)

This function calculates the zeros with input and output directions from a state space representation using the method outlined on pg. 140

Parameters: A : numpy matrix A matrix of state space representation B : numpy matrix B matrix of state space representation C : numpy matrix C matrix of state space representation D : numpy matrix D matrix of state space representation zeros_in_out : list zeros_in_out[i] contains a zero, input direction vector and output direction vector
utils.zeros(G=None, A=None, B=None, C=None, D=None)

Return the zeros of a multivariable transfer function system for with transfer functions or state-space. For transfer functions, Theorem 4.5 (p139) is used. For state-space, the method from Equations 4.66 and 4.67 (p138) is applied.

Parameters: G : sympy or mimotf matrix (n x n) The transfer function G(s) of the system. A, B, C, D : numpy matrix State space parameters zero : array List of zeros.

Common features to plotting functions in this script

## Default parameters¶

axlim : list [xmin, xmax, ymin, ymax]
A list containing the minimum and maximum limits for the x and y-axis. To autoscale a limit enter ‘None’ in its placeholder. The default is to allow autoscaling of the axes.
w_start : float
The x-axis valve at which to start the plot.
w_end : float
The x-axis value at which to stop plotting.
points : float
The number of data points to be used in generating the plot.

## Example¶

def G(s):
return numpy.matrix([[s/(s+1), 1],
[s**2 + 1, 1/(s+1)]])

plt.figure(‘Example 1’) your_utilsplot_functionA(G, w_start=-5, w_end=2, axlim=[None, None, 0, 1], more_parameters) plt.show()

plt.figure(‘Example 2’) plt.subplot(2, 1, 1) your_utilsplot_functionB(G) plt.subplot(2, 1, 2) your_utilsplot_functionC(G) plt.show()

utilsplot.adjust_spine(xlabel, ylabel, x0=0, y0=0, width=1, height=1)

General function to adjust the margins for subplots.

Parameters: xlabel : string Label on the main x-axis. ylabel : string Label on the main x-axis. x0 : integer Horizontal offset of xlabel. y0 : integer Verticle offset of ylabel. width : float Scaling factor of width of subplots. height : float Scaling factor of height of subplots. fig : matplotlib subplot area
utilsplot.bode(G, w_start=-2, w_end=2, axlim=None, points=1000, margin=False)

Shows the bode plot for a plant model

Parameters: G : tf Plant transfer function. margin : boolean Show the cross over frequencies on the plot (optional). GM : array containing a real number Gain margin. PM : array containing a real number Phase margin. Plot : matplotlib figure
utilsplot.bodeclosedloop(G, K, w_start=-2, w_end=2, axlim=None, points=1000, margin=False)

Shows the bode plot for a controller model

Parameters: G : tf Plant transfer function. K : tf Controller transfer function. margin : boolean Show the cross over frequencies on the plot (optional).
utilsplot.complexplane(args, color=True, marker='o', msize=5)

Plot up to 8 arguments on a complex plane (limited by the colors) Useful when you wish to compare sets of complex numbers graphically or plot your poles and zeros

Parameters: args : A list of the list of numbers to plot color : True if every tuple of info must be a different color False if all must be the same color marker : Type of marker to use https://matplotlib.org/api/markers_api.html msize : Size of the marker Example: A = [1+2j, 1-2j, 1+1j, 2-1j] B = [1+2j, 3+2j, 1, 1+2j] complexplane([A, B, [1+3j, 2+5j]], marker=’+’, msize=8)
utilsplot.condtn_nm_plot(G, w_start=-2, w_end=2, axlim=None, points=1000)

Plot of the condition number, the maximum over the minimum singular value

Parameters: G : numpy matrix Plant model. Plot : matplotlib figure
utilsplot.dis_rejctn_plot(G, Gd, S=None, w_start=-2, w_end=2, axlim=None, points=1000)

A subplot of disturbance condition number to check for input saturation (equation 6.43, p238). Two more subplots indicate if the disturbances fall withing the bounds of S, applying equations 6.45 and 6.46 (p239).

Parameters: G : numpy matrix Plant model. Gd : numpy matrix Plant disturbance model. S : numpy matrix Sensitivity function (optional, if available). # TODO test S condition Returns ——- Plot : matplotlib figure
utilsplot.freq_step_response_plot(G, K, Kc, t_end=50, freqtype='S', w_start=-2, w_end=2, axlim=None, points=1000)

A subplot function for both the frequency response and step response for a controlled plant

Parameters:
G : tf

Plant transfer function.

K : tf

Controller transfer function.

Kc : integer

Controller constant.

t_end : integer

Time period which the step response should occur.

freqtype : string (optional)

Type of function to plot:

freqtype Type of function to plot
S Sensitivity function
T Complementary sensitivity function
L Loop function
Returns:
Plot : matplotlib figure
utilsplot.input_acceptable_const_plot(G, Gd, w_start=-2, w_end=2, axlim=None, points=1000, modified=False)

Subbplots for input constraints for accepatable control. Applies equation 6.55 (p241).

Parameters: G : numpy matrix Plant model. Gd : numpy matrix Plant disturbance model. modified : boolean If true, the arguments in the equation are change to $$\sigma_1 (G) + 1 \geq |u_i^H g_d|$$. This is to avoid a negative log scale. Plot : matplotlib figure
utilsplot.input_perfect_const_plot(G, Gd, w_start=-2, w_end=2, axlim=None, points=1000, simultaneous=False)

Plot for input constraints for perfect control. Applies equation 6.50 (p240).

Parameters: G : numpy matrix Plant model. Gd : numpy matrix Plant disturbance model. simultaneous : boolean. If true, the induced max-norm is calculated for simultaneous disturbances (optional). Plot : matplotlib figure
utilsplot.mimo_bode(G, w_start=-2, w_end=2, axlim=None, points=1000, Kin=None, text=False, sv_all=False)

Plots the max and min singular values of G and computes the crossover frequency.

If a controller is specified, the max and min singular values of S are also plotted and the bandwidth frequency computed (p81).

Parameters: G : numpy matrix Matrix of plant transfer functions. Kin : numpy matrix Controller matrix (optional). text : boolean If true, the crossover and bandwidth frequencies are plotted (optional). sv_all : boolean If true, plot all the singular values of the plant (optional). wC : real Crossover frequency. wB : real Bandwidth frequency. Plot : matplotlib figure
utilsplot.mimo_nyquist_plot(L, w_start=-2, w_end=2, axlim=None, points=1000)

Nyquist stability plot for MIMO system.

Parameters: L : numpy matrix Closed loop transfer function matrix as a function of s, i.e. def L(s). Plot : matplotlib figure
utilsplot.perf_Wp_plot(S, wB_req, maxSSerror, w_start, w_end, axlim=None, points=1000)

MIMO sensitivity S and performance weight Wp plotting funtion.

Parameters: S : numpy array Sensitivity transfer function matrix as function of s => S(s) wB_req : float The design or require bandwidth of the plant in rad/time. 1/time eg: wB_req = 1/20sec = 0.05rad/s maxSSerror : float The maximum stead state tracking error required of the plant. wStart : float Minimum power of w for the frequency range in rad/time. eg: for w starting at 10e-3, wStart = -3. wEnd : float Maximum value of w for the frequency range in rad/time. eg: for w ending at 10e3, wStart = 3. wB : float The actually plant bandwidth in rad/time given the specified controller used to generate the sensitivity matrix S(s). Plot : matplotlib figure
utilsplot.ref_perfect_const_plot(G, R, wr, w_start=-2, w_end=2, axlim=None, points=1000, plot_type='all')

Use these plots to determine the constraints for perfect control in terms of combined reference changes. Equation 6.52 (p241) calculates the minimal requirement for input saturation to check in terms of set point tracking. A more tighter bounds is calculated with equation 6.53 (p241).

Parameters:
G : tf

Plant transfer function.

R : numpy matrix (n x n)

Reference changes (usually diagonal with all elements larger than 1)

wr : float

Frequency up to witch reference tracking is required

type_eq : string

Type of plot:

plot_type Type of plot
minimal Minimal requirement, equation 6.52
tighter Tighter requirement, equation 6.53
allo All requirements
Returns:
Plot : matplotlib figure
utilsplot.rga_nm_plot(G, pairing_list=None, pairing_names=None, w_start=-2, w_end=2, axlim=None, points=1000, plot_type='all')

Plots the RGA number for a specified pairing

Parameters:
G : numpy matrix

Plant model.

pairing_list : List of sparse numpy matrices of the same shape as G.

An array of zeros with a 1. at each required output-input pairing. The default is a diagonal pairing with 1.’s on the diagonal.

plot_type : string

Type of plot:

plot_type Type of plot
all All the pairings on one plot
element Each pairing has its own plot
Returns:
Plot : matplotlib figure
utilsplot.rga_plot(G, w_start=-2, w_end=2, axlim=None, points=1000, fig=0, plot_type='elements', input_label=None, output_label=None)

Plots the relative gain interaction between each output and input pairing

Parameters:
G : numpy matrix

Plant model.

plot_type : string

Type of plot.

plot_type Type of plot
all All the RGAs on one plot
output Plots grouped by output
input Plots grouped by input
element Each element has its own plot
Returns:
Plot : matplotlib figure
utilsplot.step(G, t_end=100, initial_val=0, input_label=None, output_label=None, points=1000)

This function is similar to the MatLab step function.

Parameters: G : tf Plant transfer function. t_end : integer Time period which the step response should occur (optional). initial_val : integer Starting value to evaluate step response (optional). input_label : array List of input variable labels. output_label : array List of output variable labels. Plot : matplotlib figure
utilsplot.step_response_plot(Y, U, t_end=50, initial_val=0, timedim='sec', axlim=None, points=1000, constraint=None, method='numeric')

A plot of the step response of a transfer function

Parameters: Y : tf Output transfer function. U : tf Input transfer function. t_end : integer Time period which the step response should occur (optional). initial_val : integer Starting value to evaluate step response (optional). constraint : float The upper limit the step response cannot exceed. is only calculated if a value is specified (optional). method : [‘numeric’,’analytic’] The method that is used to calculate a constrained response. A constraint value is required (optional). Plot : matplotlib figure
utilsplot.sv_dir_plot(G, plot_type, w_start=-2, w_end=2, axlim=None, points=1000)

Plot the input and output singular vectors associated with the minimum and maximum singular values.

Parameters:
G : matrix

Plant model or sensitivity function.

plot_type : string

Type of plot.

plot_type Type of plot
input Plots input vectors
output Plots output vectors
Returns:
Plot : matplotlib figure